Учебник MAXIMUM Education

Интернет-энциклопедия по школьным предметам от Maximum Education. Учебник поможет решить домашнее задание, подготовиться к контрольной и вспомнить прошлые темы.

11 класс
Физика

Колебательный контур

Колебательный контур ― это электрическая цепь, содержащая катушку индуктивности и конденсатор. В такой электрической цепи происходят колебания электрического тока и напряжения, и взаимная трансформация энергии электрического поля и энергии магнитного поля.

Процессы в колебательном контуре У заряженного конденсатора на одной пластине находится определенное количество отрицательного заряда, а на другой ― положительного. Поскольку между пластинами конденсатора расположен диэлектрик (или воздух, и пластины не соприкасаются) ― заряд не может прямо перейти из одной пластины на другую. Но как только такой конденсатор оказывается подключенным к проводящей цепи, один конец которой связан с одной пластиной ― а другой с другой, заряды начинают переходить от пластины к пластине по «длинному пути» ― через всю цепь. Постепенно конденсатор разряжается ― теряет заряд, а в цепи наблюдается ток, ведь ток ― это направленные движения зарядов.

Если в цепи, кроме проводов и резисторов, находится катушка индуктивности, в равномерный и быстрый процесс перераспределения заряда вмешивается ЭДС самоиндукции катушки. Согласно правилу Ленца, втекающий в катушку ток вызывает ЭДС самоиндукции ― а ЭДС самоиндукции создает индуцированный ток, направленный так, чтобы препятствовать изменению тока в цепи. Если ток в цепи вдруг резко увеличивается ― индукционный ток стремиться его уменьшить, если ток в сети вдруг уменьшается ― индукционный ток стремиться его увеличивать.

Поэтому из―за катушки индуктивности заряд не переходит сразу через всю цепь, от одной обкладки конденсатора к другой. Сила тока в цепи медленно увеличивается ― потому что ее быстрому росту препятствует ЭДС самоиндукции катушки. Максимальной сила тока становится в тот момент, когда конденсатор разряжен (обе его обкладки обладают нулевым зарядом). В этот момент сила тока максимальна благодаря тому, что как только ее перестает наращивать конденсатор за счет потерянных зарядов ― ЭДС самоиндукции прекращает ей препятствовать.

Но разряженный конденсатор больше не может поддерживать силу току ― ведь заряда на его обкладках нет, и не будь в цепи катушки индукции, ток бы прекратился. Однако здесь вновь срабатывает правило Ленца: после того как сила тока достигла максимума и начала уменьшаться ― в катушке возникает ЭДС и индукционные токи, которые стремятся вернуть силу тока такой, как она была ― максимальной. Поэтому, даже после того, как конденсатор разряжен, в цепи продолжает течь ток. Заряды попадают на обкладку конденсатора и постепенно заряжают ее. На этот раз, та обкладка конденсатора, которая была заряжена положительно и принимала заряд, начинает накапливать отрицательный заряд, а так обкладка, которая была заряжена отрицательно, становится заряженной положительно.

После того как конденсатор зарядиться ― он вновь начинает разряжаться. Таким образом, в контуре происходят колебания заряда, силы тока, напряжения и энергий магнитного и электрического поля в катушке индуктивности и конденсаторе.

Цикл процессов, происходящих в колебательном контуре:

1: Начальное состояние ― конденсатор заряжен до максимального заряда Qm, но силы тока в цепи пока нет.

2. Конденсатор разряжается ― заряд переходит от одной обкладки на другую через всю цепь, сила тока в цепи постепенно увеличивается.

3. Конденсатор разряжен ― весь заряд с обкладок уже ушел, сила тока в цепи максимальна и равна Im.

4. Конденсатор заряжается ― сила тока в цепи уменьшается, а конденсатор получает заряд.

5. Конденсатор перезаряжен ― но теперь та обкладка, которая была положительно заряженной, стала отрицательно заряженной, и наоборот. Тока в цепи нет.

6. Конденсатор вновь разряжается, но в обратную сторону ― и ток течет в сторону, обратную тому, что был на этапе 2.

7. Конденсатор разряжен ― ток достиг максимума, а заряда на конденсаторе нет.

На графике показаны колебания изменения напряжения на конденсаторе (U), колебания изменения заряда на конденсаторе (Q), и колебания силы тока в катушке индуктивности (I). Период колебаний параметров колебательного контура равен T.

Для постоянного тока сила тока определялась как количество заряда, прошедшее через сечение проводника за некоторый промежуток времени: \(I = \frac{\mathrm{\Delta}q}{\mathrm{\Delta}t}\), где

I ― сила тока, [А];

q ― количество заряда, [Кл];

t ― время, [c].

Но переменный ток изменяет в цепи свою величину и свое направление, поэтому силу переменного тока определяют как производную количества заряда по времени:

\(I = \frac{\mathrm{\Delta}q}{\mathrm{\Delta}t} = q^{'}\left( t \right),\ \)где

I ― сила тока, [А];

q ― количество заряда, [Кл];

t ― время, [c].

Заряд в колебательном контуре изменяется по гармоническому закону q(t) = Qmaxsin(ωt + φ0), где

q ― количество заряда, [Кл];

Qmax ― максимальный заряд (амплитуда колебаний заряда), [Кл];

ω ― циклическая частота колебаний [рад/с];

φ0 ― начальная фаза колебаний, [рад];

t ― время, [c].

Следовательно, сила тока в контуре изменяется по закону I = qt' = (Qmaxsin(ωt + φ0))t' = Qmaxωcos(ωt + φ0). При этом Qmaxω ― максимальная сила тока в цепи: Imax = Qmaxω.

Сила тока в цепи переменного тока равна I = Imaxcos(ωt + φ0), где

Imax ― максимальная сила тока в цепи, [A];

ω ― циклическая частота колебаний [рад/с];

φ0 ― начальная фаза колебаний, [рад];

t ― время, [c].

В колебательном контуре происходит трансформация энергии электрического поля в энергию магнитного поля.

\(W_{e} = \frac{\text{qU}}{2} = \frac{CU^{2}}{2} = \frac{q^{2}}{2C}\)

где

We ― энергия электрического поля конденсатора, [Дж];

C ― электроемкость конденсатора, [Ф];

U ― напряжение на обкладках конденсатора, [В];

q ― заряд на обкладках конденсатора, [Кл].

Так как напряжение на обкладках конденсатора в цепи переменного тока величина переменная, то и энергия электрического поля конденсатора ― переменна.

Энергия электрического поля конденсатора всегда положительна.

Энергия магнитного поля индукционной катушки равна \(W_{m} = \frac{LI^{2}}{2}\), где

Wm ― энергия магнитного поля индукционной катушки, [Дж];

L ― индуктивность катушки, [Гн];

I ― сила тока, [А].

Как видно из формулы, энергия магнитного поля катушка также всегда положительна ― вне зависимости от того, какое из направлений силы тока принято в качестве положительного, а какое ― в качестве отрицательно, сила тока, возведенная в квадрат, всегда будет положительной величиной.

График изменения энергии электрического поля конденсатора We и магнитного поля катушки Wm за один цикл работы колебательного контура показан на рисунке выше.

В начальный момент времени конденсатор полностью заряжен, и энергия его электрического поля максимальна и равна We max, а энергия магнитного поля катушки равна нулю, так как ток в цепи отсутствует. По мере разрядки конденсатора, энергия его электрического поля уменьшается ― из-за того, что уменьшается заряд обкладок, а энергия магнитного поля катушки увеличивается ― поскольку заряд, ушедший из конденсатора, создает ток в цепи, сила которого увеличивается. В момент, когда конденсатор разряжается полностью, энергия его электрического поля равна нулю ― а энергия магнитного поля катушки максимальна Wm max. Затем, по мере перезарядки конденсатора, энергия его электрического поля восстанавливается до максимума, а энергия магнитного поля катушки уменьшается до нуля.

Согласно закону сохранения энергии, полная энергия колебательного контура постоянна в любой момент времени: W = Wm max = We max = We + Wm, где

W ― полная энергия свободных электромагнитных колебаний, W = const, [Дж];

Wm max ― максимальная энергия магнитного поля катушки индуктивности, [Дж];

We max ― максимальная энергия электрического поля конденсатора, [Дж];

Wm ― энергия магнитного поля катушки индуктивности, [Дж];

We ― энергия электрического поля конденсатора, [Дж];

или \(W = \frac{CU^{2}}{2} + \frac{LI^{2}}{2} = \frac{CU_{\max}^{2}}{2} = \frac{LI_{\max}^{2}}{2}\), где

W ― полная энергия свободных электромагнитных колебаний, W = const, [Дж];

C ― электроемкость конденсатора, [Ф];

U ― напряжение на обкладках конденсатора, [В];

Umax ― максимальное напряжение на обкладках конденсатора, [В];

L ― индуктивность катушки, [Гн];

I ― сила тока в катушке индуктивности, [А];

Imax ― максимальная сила тока в катушке индуктивности, [A].

Частота колебаний силы тока и напряжения в колебательном контуре определяется формулой Томпсона и зависят только от индуктивности катушки и электроемкости конденсатора. Частота и период гармонических колебаний в колебательном контуре равны \(\nu = \frac{1}{2\pi\sqrt{\text{LC}}}\) и \(T = 2\pi\sqrt{\text{LC}}\)где

v ― частота колебаний [Гц];

Т ― период колебаний [c];

L ― индуктивность катушки [Гн];

С ― электроёмкость конденсатора [Ф].