НОК и НОД
НОК и НОД
Рассмотрим выражение:
Можем сказать, что 45 – делимое, а 9 – делитель данного выражения.
Мы знаем, что 45 делится нацело на число 9. В таком случае, если мы захотим описать, чем эти числа являются друг другу, то мы скажем, что
9 – делитель числа 45
45 – кратно числу 9
Иногда при решении задач нужно находить общие кратные или общие делители двух чисел.
Наименьший делитель двух чисел – всегда единица. Такой делитель нет смысла искать, поэтому ищут наибольший общий делитель.
НОД:
Рассмотрим числа 30 и 45.
-
Найдем все их существующие делители, т.е. числа, на которые каждое из них поделится нацело:
-
Мы видим, что у этих двух чисел есть несколько общих делителей. Наибольший из них – 15 – является самым большим. Это и есть НОД.
Значит и число 45 и число 30 можно нацело поделить на 15. Записывают это так:
Ответ: 15.
Найдем
-
Выпишем все делители этих чисел.
Так же делители можно сразу записывать парой. Если 20 нацело делится на 2, то
Значит 10 – тоже делитель числа 20. Запишем делители 2 и 10 парой:
-
Выделим все общие делители и найдем наибольший из них. В данном случае
Ответ: 4.
НОК:
Найдем
-
Возьмем наименьшее число. В данном случае – 10.
Будем умножать его на натуральные числа по порядку, пока не получим число, кратное 12, то есть такое, на которое нацело поделится и 10, и 12. Оно и будет НОК этих двух чисел. Такой метод называется методом подбора.
-
Первое число, которое будет кратно обоим числам и является их наименьшим общим кратным.
Общих кратный, в отличии от делителей, бесконечно много, поэтому обычно выбирают наименьший их них.
Ответ: 60.
Также можно находить НОК через разложение на множители:
Найдём
-
Разложим числа 6 и 8 на простейшие множители, т.е. представим каждое число как произведения простых чисел. Множители большего числа запишем сверху:
8:
6:
-
Видим, что множители 1 и 2 повторяются у обоих чисел, поэтому для меньшего числа их уберем. Останется:
-
Перемножим все оставшиеся числа. Их произведение и будет НОК:
Ответ: 24.
Найдем разложением на множители:
-
Разложим оба числа на простые множители. Сверху запишем большее число:
12: 1, 2, 2, 3
10: 1, 2, 5
-
Для меньшего числа зачеркнем те множители, которые уже есть у большего числа:
-
Перемножим все оставшиеся числа:
Наш ответ совпал с ответом, где мы использовали метод подбора.
Ответ: 60.
ВЗАИМОСВЯЗЬ НОК И НОД:
Произведение НОК и НОД некоторых чисел равно произведению самих этих чисел:
Докажем эту формулу на примере.
Рассмотрим пару чисел 24 и 60.
-
Найдем их НОД:
-
Найдем их НОК:
-
Рассмотрим поближе НОК. Чтобы его получить, мы переменожили все простые множители чисел 60 и 24 за исключением множителей 1, 2, 2, 3. Найдем отдельно их произведение:
Если перемножить все простые множители числе 60 и 24 мы получим просто их произведение, при этом оно будет состоять из НОК и числа 12, которое в свою очередь равно НОД:

Содержание